The aim of this study by Ling and Hui (2019) was to establish a set of assessment methods suitable for evaluating the complex indoor environment of hospital wards and to ascertain the composition of bacteria and microbial ecology of hospital wards.
The aim of this study by Ling and Hui (2019) was to establish a set of assessment methods suitable for evaluating the complex indoor environment of hospital wards and to ascertain the composition of bacteria and microbial ecology of hospital wards.
Colony-forming units (CFUs), PM2.5 detection, real-time PCR, and adenosine triphosphate (ATP) bioluminescence assay were employed to evaluate the complexity of indoor air in 18 wards of nine departments in a hospital and two student dormitories in a university. Subsequently, the microbial samples were quantified and identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS).
Although the studied indices were relatively independent, the PM2.5 content was correlated with bacterial CFUs determined by passive sedimentation method, bacterial and fungal counts measured by real-time PCR, and ATP bioluminescence assay. The composition of microorganisms in the air of hospital wards differed from that in the air of student dormitories. The dominant genera in hospital wards were Staphylococcus (39.4%), Micrococcus (21.9%), Corynebacterium (11.7%), Kocuria (4.4%), Bacillus (2.9%), Streptococcus (1.6%), Moraxella (1.6%), and Enterococcus (1.3%), and the microbial ecology differed between Respiration Dept. III and other hospital departments. Additionally, 11.1 and 27.3% of bacteria in hospital wards and student dormitories were not identified, respectively.
The researchers concluded that assessment of environmental quality of hospital wards should be based on comprehensive analysis with multiple indicators. There may be imbalances in the microbial diversity in the hospital wards, therefore, monitoring of the environmental quality of hospitals is important in the prevention of nosocomial infections.
Reference: Ling S and Hui L. Evaluation of the complexity of indoor air in hospital wards based on PM2.5, real-time PCR, adenosine triphosphate bioluminescence assay, microbial culture and mass spectrometry. BMC Infectious Diseases. 2019;19:646
The Hidden Dangers of Hospital Ventilation: Are We Spreading Viruses Further?
January 31st 2025New research reveals hospital ventilation and air purifiers may unintentionally spread viral particles, increasing infection risks. Infection preventionists must rethink airflow strategies to protect patients and staff.
Clean Hospitals With Alexandra Peters, PhD: The Double-Edged Sword of High-Tech
January 30th 2025Despite revolutionary advancements like alcohol-based hand rubs, infection prevention still faces major hurdles. Poor adherence to hygiene, overreliance on technology, and understaffed environmental services create perfect storm conditions for deadly outbreaks.
Evaluating Automated Dispensing Systems for Disinfectants in Hospitals
January 23rd 2025Hospitals rely on automated disinfectant dispensers, but a study led by Curtis Donskey, MD, found inconsistent dilution levels, with some dispensers releasing only water. Improved monitoring and design modifications are essential.
The Case for an Indoor Air Quality (IAQ) Index in Health Care
January 21st 2025Evolving air quality monitoring technologies, like an IAQ Exposure Index, provide real-time data to detect airborne contaminants, enhance infection control, and protect vulnerable healthcare populations from respiratory exposures.
Infection Intel:EvaClean Expands Global Reach With Microsplitting Partnership
January 20th 2025EvaClean partners with Microsplitting Ltd. to distribute its advanced disinfection systems and absorbents, revolutionizing infection prevention across health care, education, hospitality, and industrial sectors worldwide.