Healthcare workers’ hands are the foremost means of pathogen transmission in healthcare, but detailed hand trajectories have been insufficiently researched so far. Clack, et al. (2017) developed and applied a new method to systematically document hand-to-surface exposures (HSE) to delineate true hand transmission pathways in real-life healthcare settings.
A head-mounted camera and commercial coding software were used to capture ten active care episodes by eight nurses and two physicians and code HSE type and duration using a hierarchical coding scheme. The researchers identified HSE sequences of particular relevance to infectious risks for patients based on the WHO ‘Five Moments for Hand Hygiene.' The study took place in a trauma intensive care unit in a 900-bed university hospital in Switzerland.
Overall, the 10 videos totaled 296.5 min and featured eight nurses and two physicians. A total of 4222 HSE were identified (1 HSE every 4.2 s), which concerned bare (79%) and gloved (21%) hands. The HSE inside the patient zone (n = 1775; 42%) included mobile objects (33%), immobile surfaces (5%), and patient intact skin (4%), while HSE outside the patient zone (n = 1953; 46%) included HCW’s own body (10%), mobile objects (28%), and immobile surfaces (8%). A further 494 (12%) events involved patient critical sites. Sequential analysis revealed 291 HSE transitions from outside to inside patient zone, i.e. “colonization events”, and 217 from any surface to critical sites, i.e. “infection events”. Hand hygiene occurred 97 times, 14 (5% adherence) times at colonization events and three (1% adherence) times at infection events. On average, hand rubbing lasted 13 ± 9 s.
The researchers say that the abundance of HSE underscores the central role of hands in the spread of potential pathogens while hand hygiene occurred rarely at potential colonization and infection events. They say their approach produced a valid video and coding instrument for in-depth analysis of hand trajectories during active patient care that may help to design more efficient prevention schemes.
Reference: Clack L, et al. “First-person view” of pathogen transmission and hand hygiene – use of a new head-mounted video capture and coding tool. Antimicrobial Resistance & Infection Control. 2017;6:108
Tackling Health Care-Associated Infections: SHEA’s Bold 10-Year Research Plan to Save Lives
December 12th 2024Discover SHEA's visionary 10-year plan to reduce HAIs by advancing infection prevention strategies, understanding transmission, and improving diagnostic practices for better patient outcomes.
Point-of-Care Engagement in Long-Term Care Decreasing Infections
November 26th 2024Get Well’s digital patient engagement platform decreases hospital-acquired infection rates by 31%, improves patient education, and fosters involvement in personalized care plans through real-time interaction tools.
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.
The Importance of Hand Hygiene in Clostridioides difficile Reduction
November 18th 2024Clostridioides difficile infections burden US healthcare. Electronic Hand Hygiene Monitoring (EHHMS) systems remind for soap and water. This study evaluates EHHMS effectiveness by comparing C difficile cases in 10 hospitals with CMS data, linking EHHMS use to reduced cases.