Heat exchangers installed in a hospital to conserve energy promoted growth of Legionella pneumophila (Lp) in the hot water supply, according to a new study published today in Infection Control & Hospital Epidemiology. The findings call for healthcare facilities to examine the maintenance and operations of energy recovery devices installed on their water distribution system to help prevent Legionella growth and minimize infection risk. Legionella can cause severe respiratory infections, such as Legionnaire’s Disease, in people with weakened immune systems.
“We were surprised to see the extent of the contamination in the heat exchangers,” said Michèle Prévost, PhD, principal investigator in this study. “Because these units can act as incubators for pathogens in hot water systems, the operation and maintenance of heat exchangers need to be reviewed to minimize these risks and prevent future outbreaks.”
Following two cases of healthcare-associated Legionella infections at a 400-bed university hospital in Sherbrooke, Canada, the hot water system was identified as the source of contamination. During the environmental investigation, 27 out of 34 water samples collected from taps demonstrated high levels of the Legionella bacteria. (88 percent of taps in one wing and 56 percent in the other). In addition, 7 of 8 samples taken directly from the heat exchanger had high levels of Lp. Researchers determined that the newly-installed heat exchanger, which was used to pre-heat the hot water, acted as a reservoir for Lp and contributed to the system wide contamination that led to the cases.
Maintaining elevated temperatures and water circulation within the hot water system can help limit the growth and persistence of Legionella by reducing biofilm and stagnation. However, many hospitals now face increased pressure to install energy and water conservation devices in order to meet high standards for environmental efficiency, such as LEED certification.
As a result of these findings, researchers suggest that energy recovery devices in hot water systems should be subjected to an infection risk assessment prior to installation as they may result in negative unintended consequences. They also note that hot water system operators should not rely on the passage of water through the water heater to prevent Lp from recirculating because brief exposure to higher temperatures may not be enough to inactivate certain strains of Lp that have been known to resist high temperatures.
Following review of the study results, the hospital decided to stop the use of the heat exchangers. The hospital’s energy savings in this case were estimated to range from $700 to $1,700 each month, compared to the $34,000 per episode estimated cost of Legionellosis hospitalization. Furthermore, the head of infection prevention of the hospital concluded that, “No energy or water savings are worth a life.”
Reference: Emilie Bédard, Simon Lévesque, Philippe Martin, Linda Pinsonneault, Kiran Paranjape, Cindy Lalancette, Charles-Eric Dolcé, Manuela Villion, Louis Valiquette, Sébastien Faucher, Michèle Prévost. “Energy conservation promotes Legionella pneumophila growth: the probable role of heat exchangers in a nosocomial outbreak.” Web (September 20, 2016).
Source: Society for Healthcare Epidemiology of America
Infection Intel: Revolutionizing Ultrasound Probe Disinfection With Germitec's Chronos
November 19th 2024Learn how Germitec’s Chronos uses patented UV-C technology for high-level disinfection of ultrasound probes in 90 seconds, enhancing infection control, patient safety, and environmental sustainability.
Clean Hospitals Corner With Alexandra Peters, PhD: The Issues Around Outsourcing
November 7th 2024Outsourcing environmental hygiene in health care facilities offers cost benefits but often compromises quality. Effective oversight, training, and standards are essential for ensuring patient safety.
Strengthening Defenses: Integrating Infection Control With Antimicrobial Stewardship
October 11th 2024Use this handout to explain the basics of why infection prevention and control and antimicrobial stewardship are essential and how the 2 fields must have a unified approach to patient and staff safety