Legionnaires disease outbreaks, caused by Legionella in hospital drinking water, can be prevented using the right disinfection methods. Too often hospitals make treatment decisions on marketing claims not science. A research review paper, "Controlling Legionella in Hospital Drinking Water: An Evidence-Based Review of Disinfection Methods," published in Infection Control and Hospital Epidemiology, gives decision makers standard criteria to evaluate and choose the most effective Legionella disinfection methods for their facilities.
Legionella experts and authors Yusen E. Lin, PhD, MBA, of National Kaohsiung Normal University in Kaohsiung, Taiwan; Janet E. Stout, PhD, director of Special Pathogens Laboratory and from the University of Pittsburgh Swanson School of Engineering; and Victor L. Yu, MD, of the University of Pittsburgh, rate the efficacy of systemic disinfection, focal disinfection, and short-term disinfection methods used in outbreak situations. They offer a four-step approach to assist hospitals in choosing the most effective method.
Selecting the right method or combination of methods reduces the risk of patients contracting Legionnaires disease. Stout and her colleagues strongly recommend that infection control practitioners lead the environment of care team in choosing the best disinfection methodology. They also advocate for scheduled routine monitoring through culturing to ensure safe water.
"Hospitals relying on facilities managers and vendors in selecting a disinfection method may not be basing their decisions on evidence-based research. Our paper shows that some disinfection methods work better than others," says Stout, who along with Yu, discovered the link between Legionella pneumophila in hospital drinking water and hospital-acquired Legionnaires Disease in 1982 (http://www.legionella.org).
Common Legionella disinfection methods include: copper-silver ionization, chlorine dioxide, monochloramine, ultraviolet light, and hyperchlorination, (systemic disinfection); point-of-use filtration, (focal disinfection); superheat-and-flush with or without hyperchlorination (short-term disinfection methods in outbreak situations). Hyperchlorination or heat and flush are often used during an outbreak, but are the least effective. Copper-silver ionization has fulfilled the four-step criteria for demonstrating efficacy.
The authors four-step evaluation process of disinfection systems includes ensuring the technology kills Legionella. This step is followed by a review of anecdotal experience for controlling Legionella contamination in hospitals, followed by literature review of peer-reviewed and published reports of controlled studies of years of efficacy for hospital-acquired Legionnaires disease. Finally, to confirm with multiple hospitals that disinfection methods worked.
"We hope this review will assist hospitals in choosing a method that is safe, efficient and cost-effective," says Stout.
Vet IP Roundtable 2: Infection Control and Biosecurity Challenges in Veterinary Care
March 31st 2025Veterinary IPs highlight critical gaps in cleaning protocols, training, and biosecurity, stressing the urgent need for standardized, animal-specific infection prevention practices across diverse care settings.
Invisible, Indispensable: The Vital Role of AHRQ in Infection Prevention
March 25th 2025With health care systems under strain and infection preventionists being laid off nationwide, a little-known federal agency stands as a last line of defense against preventable patient harm. Yet the Agency for Healthcare Research and Quality (AHRQ) is now facing devastating cuts—threatening decades of progress in patient safety.
The Sterile Processing Conference Survival Guide: How to Make the Most of Your Next Event
March 25th 2025From expert speakers to cutting-edge tools, sterile processing conferences, like the 2025 HSPA Annual Conference and the SoCal SPA's Spring Conference, offer unmatched opportunities to grow your skills, expand your network, and strengthen your department's infection prevention game.
Redefining Material Compatibility in Sterilization: Insights From AAMI TIR17:2024
March 24th 2025AAMI TIR17:2024 provides updated, evidence-based guidance on material compatibility with sterilization modalities. It offers essential insights for medical device design and ensures safety without compromising functionality.