The shape and material composition of the N95 respirators varied widely from manufacturer to manufacturer, which can result in variations in the efficacy of a particular method from one product to the next.
Necessity might be the mother of invention, but the inventions themselves—at least at first go-around—often wind up being abandoned. That was not an option for infection preventionists and other health care professionals forced to use various methods to decontaminate and reuse N95 masks early in the COVID-19 pandemic. Luckily, though, most methods used for this purpose were adequate.
Such are the findings in a study in JAMA.1 Corresponding author Max A. Schumm, MD, of the UCLA David Geffen School of Medicine, and colleagues noted that filtering facepiece respirators such as N95 masks have been in limited supply since the pandemic’s start last year. Unable to purchase adequate supplies of the theoretically single-use masks, health systems had to begin reprocessing them, something the Centers for Disease Control and Prevention (CDC) says is acceptable in emergency conditions.
“However, that [CDC] guidance is associated with few recommendations for how to reprocess these devices,” Schumm et al wrote. “Filtering facepiece respirators can fail if the reprocessing system cannot kill all the pathogens that accumulate on the mask material itself, if the filters are compromised and lose filtering efficiency, or if the mask elasticity is altered such that it no longer provides a tight fit and air leaks around the mask.”
Hoping to provide better guidance on how best to reprocess the masks, Schumm and colleagues set about examining existing studies. They found 42 studies evaluating 5 decontamination processes: UV germicidal irradiation, moist heat, microwave-generated steam, vaporized hydrogen peroxide, and ethylene oxide. The authors extracted data from the studies on a variety of parameters: process method, pathogen removal, mask filtration efficiency, facial fit, user safety, and processing capability.
The results were mostly positive. Most methods proved reliable and relatively easy to implement. The investigators found that UV germicidal irradiation, vaporized hydrogen peroxide, moist heat, and microwave-generated steam all were effective in sterilizing the respirators, and the respirators sterilized in these methods retained their filtration performance. The first 2 methods—UV germicidal irradiation, vaporized hydrogen peroxide—caused the least damage to the respirators, Schumm and colleagues found. Irradiation, moist heat, and microwave-generated steam were found to have short treatment times and could be done with readily available equipment. Vaporized hydrogen peroxide was a suitable option, although it takes longer and is more expensive, they said. The fifth method, ethylene oxide, could potentially leave toxic residue and is harder to implement, they concluded.
“Overall, the results of the review should be reassuring to health care workers because we can effectively decontaminate this essential [personal protective equipment] without damaging its filtering capability or the polymers that make up the mask,” Schumm said. However, he added 2 important caveats. First, some methods are more likely to damage the devices. Second, the shape and material composition of the respirators varied widely from manufacturer to manufacturer, which can result in variations in the efficacy of a particular method from one product to the next. “For these reasons, we recommend clinicians and leaders of health care systems confirm that the reprocessing system in use at their facility has been tested for the specific brand and model of the N95 respirator in their stockpile,” he said.
Schumm said that because N95 respirators have irregular surfaces and porous material, it is possible the SARS-CoV-2 virus or other pathogens could be protected or shielded from sterilization or become absorbed into the material. He said masks with a fluid-resistant coating may perform better for this reason. He also said decontamination performance in the studies is different from real-world exposure scenarios, which could have an impact on real-world decontamination efficacy. “Taken together, more research should be directed toward reprocessing effectiveness for SARS-CoV-2 to better characterize optimal decontamination protocols for this pathogen,” he said.
Reference:
This article originally appeared in Contagion®.
Stay prepared and protected with Infection Control Today's newsletter, delivering essential updates, best practices, and expert insights for infection preventionists.
Reducing Hidden Risks: Why Sharps Injuries Still Go Unreported
July 18th 2025Despite being a well-known occupational hazard, sharps injuries continue to occur in health care facilities and are often underreported, underestimated, and inadequately addressed. A recent interview with sharps safety advocate Amanda Heitman, BSN, RN, CNOR, a perioperative educational consultant, reveals why change is overdue and what new tools and guidance can help.
New Study Explores Oral Vancomycin to Prevent C difficile Recurrence, But Questions Remain
July 17th 2025A new clinical trial explores the use of low-dose oral vancomycin to prevent Clostridioides difficile recurrence in high-risk patients taking antibiotics. While the data suggest a possible benefit, the findings stop short of statistical significance and raise red flags about vancomycin-resistant Enterococcus (VRE), underscoring the delicate balance between prevention and antimicrobial stewardship.
What Lies Beneath: Why Borescopes Are Essential for Verifying Surgical Instrument Cleanliness
July 16th 2025Despite their smooth, polished exteriors, surgical instruments often harbor dangerous contaminants deep inside their lumens. At the HSPA25 and APIC25 conferences, Cori L. Ofstead, MSPH, and her colleagues revealed why borescopes are an indispensable tool for sterile processing teams, offering the only reliable way to verify internal cleanliness and improve sterile processing effectiveness to prevent patient harm.
The Next Frontier in Infection Control: AI-Driven Operating Rooms
Published: July 15th 2025 | Updated: July 15th 2025Discover how AI-powered sensors, smart surveillance, and advanced analytics are revolutionizing infection prevention in the OR. Herman DeBoard, PhD, discusses how these technologies safeguard sterile fields, reduce SSIs, and help hospitals balance operational efficiency with patient safety.
Targeting Uncertainty: Why Pregnancy May Be the Best Time to Build Vaccine Confidence
July 15th 2025New national survey data reveal high uncertainty among pregnant individuals—especially first-time parents—about vaccinating their future children, underscoring the value of proactive engagement to strengthen infection prevention.