Worldwide, the emergence of multidrug-resistant gram-negative bacteria is a clinical problem. Surface disinfectant cleaners (SDCs) that are effective against these bacteria are needed for use in high risk areas around patients and on multi-touch surfaces. Reichel, et al. (2014) determined the efficacy of several SDCs against clinically relevant bacterial species with and without common types of multidrug resistance.
Bacteria species used were ATCC strains; clinical isolates classified as antibiotic-susceptible; and multi-resistant clinical isolates from Klebsiella oxytoca, Klebsiella pneumoniae, and Serratia marcescens (all OXA-48 and KPC-2); Acinetobacter baumannii (OXA-23); Pseudomonas aeruginosa (VIM-1); and Achromobacter xylosoxidans (ATCC strain). Experiments were carried out according to EN 13727:2012 in quadruplicate under dirty conditions. The five evaluated SDCs were based on alcohol and an amphoteric substance (AAS), an oxygen-releaser (OR), surface-active substances (SAS), or surface-active-substances plus aldehydes (SASA; two formulations). Bactericidal concentrations of SDCs were determined at two different contact times. Efficacy was defined as a log10 > 5 reduction in bacterial cell count.
SDCs based on AAS, OR, and SAS were effective against all six species irrespective of the degree of multi-resistance. The SASA formulations were effective against the bacteria irrespective of degree of multi-resistance except for one of the four P. aeruginosa isolates (VIM-1). We found no general correlation between SDC efficacy and degree of antibiotic resistance.
The researchers conclude that SDCs were generally effective against Gram-negative bacteria with and without multidrug resistance. SDCs are therefore suitable for surface disinfection in the immediate proximity of patients. Single bacterial isolates, however, might have reduced susceptibility to selected biocidal agents. Their research was published in BMC Infectious Diseases.
Reference: Reichel M, Schlicht A, Ostermeyer C and Kampf G. Efficacy of surface disinfectant cleaners against emerging highly resistant gram-negative bacteria. BMC Infectious Diseases 2014, 14:292 doi:10.1186/1471-2334-14-292
From Shortages to Security: How Reusable Health Care Textiles Can Transform Infection Prevention
March 7th 2025Reusable health care textiles enhance infection prevention, reduce waste, and strengthen supply chains. Hygienically clean textiles offer a sustainable, cost-effective alternative to disposable PPE, ensuring patient safety and environmental responsibility.
The Hidden Dangers of Hospital Ventilation: Are We Spreading Viruses Further?
January 31st 2025New research reveals hospital ventilation and air purifiers may unintentionally spread viral particles, increasing infection risks. Infection preventionists must rethink airflow strategies to protect patients and staff.
Clean Hospitals With Alexandra Peters, PhD: The Double-Edged Sword of High-Tech
January 30th 2025Despite revolutionary advancements like alcohol-based hand rubs, infection prevention still faces major hurdles. Poor adherence to hygiene, overreliance on technology, and understaffed environmental services create perfect storm conditions for deadly outbreaks.