The near-patient environment is often heavily contaminated, yet the decontamination of near-patient surfaces and equipment is often poor. Moore, et al. (2012) conducted controlled laboratory studies to assess the Nanoclave Cabinet's ability to eradicate a range of potential pathogens including Clostridium difficile spores and adenovirus from different types of surfaces. The Nanoclave Cabinet produces large amounts of ultraviolet-C (UV-C) radiation (53 W/m2) and is designed to rapidly disinfect individual items of clinical equipment.
Â
Each test surface was inoculated with known levels of vegetative bacteria (10^6 cfu/cm2), C. difficile spores (10^2-10^6 cfu/cm2) or adenovirus (10^9 viral genomes), placed in the Nanoclave Cabinet and exposed for up to 6 minutes to the UV-C light source. Survival of bacterial contaminants was determined via conventional cultivation techniques. Degradation of viral DNA was determined via PCR.
Results were compared to the number of colonies or level of DNA recovered from non-exposed control surfaces. Experiments were repeated to incorporate organic soils and to compare the efficacy of the Nanoclave Cabinet to that of antimicrobial wipes.
Â
After exposing eight common non-critical patient care items to two 30-second UV-C irradiation cycles, bacterial numbers on 40 of 51 target sites were consistently reduced to below detectable levels ([greater than or equal to] 4.7 log10 reduction). Bacterial load was reduced but still persisted on other sites. Objects that proved difficult to disinfect using the Nanoclave Cabinet (e.g., blood pressure cuff) were also difficult to disinfect using antimicrobial wipes. The efficacy of the Nanoclave Cabinet was not affected by the presence of organic soils. Clostridium difficile spores were more resistant to UV-C irradiation than vegetative bacteria. However, two 60-second irradiation cycles were sufficient to reduce the number of surface-associated spores from 10^3 cfu/cm2 to below detectable levels. A 3 log10 reduction in detectable Adenovirus DNA was achieved within 3 minutes; after 6 minutes, viral DNA was undetectable.
Â
The researchers say that the results of their study suggest that the Nanoclave Cabinet can provide rapid and effective disinfection of some patient-related equipment. However, laboratory studies do not necessarily replicate 'in-use' conditions and further tests are required to assess the usability, acceptability and relative performance of the Nanoclave Cabinet when used in situ. Their research was published in BMC Infectious Diseases.
Reference: Moore G, Ali S, Cloutman-Green EA, Bradley CR, Wilkinson MAC, Hartley JC, Fraise AP and Wilson APR. Use of UV-C radiation to disinfect non-critical patient care items: a laboratory assessment of the Nanoclave Cabinet. BMC Infectious Diseases 2012, 12:174.
Vet IP Roundtable 2: Infection Control and Biosecurity Challenges in Veterinary Care
March 31st 2025Veterinary IPs highlight critical gaps in cleaning protocols, training, and biosecurity, stressing the urgent need for standardized, animal-specific infection prevention practices across diverse care settings.
Invisible, Indispensable: The Vital Role of AHRQ in Infection Prevention
March 25th 2025With health care systems under strain and infection preventionists being laid off nationwide, a little-known federal agency stands as a last line of defense against preventable patient harm. Yet the Agency for Healthcare Research and Quality (AHRQ) is now facing devastating cuts—threatening decades of progress in patient safety.
From Shortages to Security: How Reusable Health Care Textiles Can Transform Infection Prevention
March 7th 2025Reusable health care textiles enhance infection prevention, reduce waste, and strengthen supply chains. Hygienically clean textiles offer a sustainable, cost-effective alternative to disposable PPE, ensuring patient safety and environmental responsibility.