Patients with abnormally low blood pressure were less likely to receive antibiotics even though they could benefit from such treatment, according to a recent study.
The faster that patients suffering from sepsis receive antibiotics, the better their chances for survival are. However, there still needs to be concern about possible adverse effects and contributing to antibiotic resistance, which could render the medications useless later.1 That was among the findings in a large cohort study published in JAMA Network Open, with another being that median time-to-antibiotics for sepsis declined by more than 9 minutes per year during the course of the study.2
Investigators with the University of Michigan and the US Department of Veterans Affairs (VA) also found that there did not seem to be a standardized approach concerning when to administer antibiotics. The study included 111,385 hospitalizations for sepsis at 130 VA hospitals nationwide from 2013 to 2018. The primary outcome was time-to-antibiotics across study periods, hospitals, and patient subgroups based on presenting temperature and blood pressure.
“[Although] time-to-antibiotics declined overall and in nearly every hospital during the study, there remained more than 2-fold variation in median time-to-antibiotics in the most recent study years,” the study states. The variation remained even after investigators adjusted the data to account for different patient characteristics. “This may represent a potential opportunity for practice improvement going forward, but the benefits of further accelerating time-to-antibiotics must be balanced against the risk of driving antibiotic overuse in patients with noninfectious illness,” the study states.
A good place to start, the study indicates, would be better monitoring of patients with abnormally low blood pressure (hypotension). The study states that “time-to-antibiotics was faster for patients with fever and normal blood pressure than for patients without fever but with hypotension, suggesting that obvious signs of infection are a stronger trigger to prescribe antibiotics than shock or that competing treatments for patients with hypotension (eg, starting vasopressors) are prioritized before antibiotics, even though antibiotic delays are associated with greater mortality risk in patients with shock or hypotension.”
Most patients (68.7%) received their first dose of antibiotics in the emergency department. A total of 7574 patients (6.8%) died in the hospital, and longer time to antibiotics was associated with higher in-hospital mortality. A total of 13,855 patients (12.4%) died within 30 days of discharge.
The median time-to-antibiotics (adjusted for patient characteristics) declined by 9 minutes per calendar year but varied significantly between hospitals, with average time-to-antibiotics in the most recent period ranging from 3.1 to 6.7 hours. Overall, the unadjusted median time-to-antibiotics decreased from 4.5 hours in the first year of the study to 3.5 hours in the most recent year.
Max Wayne, MD, fellow in pulmonary and critical care medicine at the University of Michigan, told Infection Control Today®’s sister publication Contagion® that “our findings suggest that patients with more obvious signs of infection get antibiotics faster. However, it is important to be cognizant that some patients with subtle findings can nonetheless still be very sick due to infection and warrant early antibiotics.”3
The study also states that “slope of change over time varied across hospitals in this initiative, resulting in a growing disparity in time-to-antibiotics by race as hospitals treating higher proportions of Black patients experienced less decrease over time.”
For patients in hospitals with faster time-to-antibiotics, the odds of receiving antibiotics within 3 hours increase by 65%. Median time-to-antibiotics during the most recent year of the study (3.9 hours) varied depending on presenting characteristics. Wayne said that “fever seemed to be a stronger driver of rapid antibiotics than low blood pressure.”
A version of this article originally appeared in Contagion®.
References:
The Leapfrog Group and the Positive Effect on Hospital Hand Hygiene
November 21st 2024The Leapfrog Group enhances hospital safety by publicizing hand hygiene performance, improving patient safety outcomes, and significantly reducing health care-associated infections through transparent standards and monitoring initiatives.
Managing Multimorbidity and Polypharmacy in HIV: Insights From Michelle S. Cespedes, MD, MS
November 20th 2024Michelle S. Cespedes, MD, MS, discusses the challenges of managing multimorbidity and polypharmacy in HIV treatment, emphasizing patient education, evolving guidelines, and real-world insights from the REPRIEVE study.
Longhorn Vaccines and Diagnostics to Showcase Breakthrough Vaccine Data at IDWeek 2024
November 19th 2024Longhorn Vaccines and Diagnostics revealed promising data on universal influenza vaccine LHNVD-110 and AMR sepsis vaccine LHNVD-303 at IDWeek 2024, addressing critical global health challenges.
Infection Intel: Revolutionizing Ultrasound Probe Disinfection With Germitec's Chronos
November 19th 2024Learn how Germitec’s Chronos uses patented UV-C technology for high-level disinfection of ultrasound probes in 90 seconds, enhancing infection control, patient safety, and environmental sustainability.
CDC HICPAC Considers New Airborne Pathogen Guidelines Amid Growing Concerns
November 18th 2024The CDC HICPAC discussed updates to airborne pathogen guidelines, emphasizing the need for masks in health care. Despite risks, the committee resisted universal masking, highlighting other mitigation strategies