Bacterial surface contamination contributes to transmission of nosocomial infections. Chemical cleansers used to control surface contamination are often toxic and incorrectly implemented. Additional non-toxic strategies should be combined with regular cleanings to mitigate risks of human error and further decrease rates of nosocomial infections. The Sharklet micropattern (MP), inspired by shark skin, is an effective tool for reducing bacterial load on surfaces without toxic additives. The studies were carried out to investigate the MP surfaces' capability to reduce colonization of methicillin-sensitive Staphylococcus aureus (MSSA) and methicillin-resistant S. aureus (MRSA) compared to smooth control surfaces.
The MP and smooth surfaces produced in acrylic film were compared for remaining bacterial contamination and colonization following inoculation. Direct sampling of surfaces was carried out after inoculation by immersion, spray, and/or touch methods. Ultimately, a combination assay was developed to assess bacterial contamination after touch transfer inoculation combined with drying (persistence) to mimic common environmental contamination scenarios in the clinic or hospital environment. The combination transfer and persistence assay was then used to test antimicrobial copper beside the MP for the ability to reduce MSSA and MRSA challenge.
The MP reduced bacterial contamination with log reductions ranging from 87 percent to 99 percent (LR = 0.90-2.18; p < 0.05) compared to smooth control surfaces. The MP was more effective than the 99.9 percent pure copper alloy C11000 at reducing surface contamination of S. aureus (MSSA and MRSA) through transfer and persistence of bacteria. The MP reduced MSSA by as much as 97 percent (LR = 1.54; p < 0.01) and MRSA by as much as 94 percent (LR = 1.26; p < 0.005) compared to smooth controls. Antimicrobial copper had no significant effect on MSSA contamination, but reduced MRSA contamination by 80 percent (LR = 0.70; p < 0.005).
The assays developed in this study mimic hospital environmental contamination events to demonstrate the performance of a MP to limit contamination under multiple conditions. Antimicrobial copper has been implemented in hospital room studies to evaluate its impact on nosocomial infections and a decrease in HAI rate was shown. Similar implementation of the MP has potential to reduce the incidence of HAIs although future clinical studies will be necessary to validate the MP’s true impact. The research was published in Antimicrobial Resistance and Infection Control.
Reference: Mann EE, Manna D, Mettetal MR, May RM, Dannemiller EM, Chung KK, Brennan AB and Reddy ST. Surface micropattern limits bacterial contamination. Antimicrobial Resistance and Infection Control 2014, 3:28 doi:10.1186/2047-2994-3-28
Infection Intel: Revolutionizing Ultrasound Probe Disinfection With Germitec's Chronos
November 19th 2024Learn how Germitec’s Chronos uses patented UV-C technology for high-level disinfection of ultrasound probes in 90 seconds, enhancing infection control, patient safety, and environmental sustainability.
Clean Hospitals Corner With Alexandra Peters, PhD: The Issues Around Outsourcing
November 7th 2024Outsourcing environmental hygiene in health care facilities offers cost benefits but often compromises quality. Effective oversight, training, and standards are essential for ensuring patient safety.
Strengthening Defenses: Integrating Infection Control With Antimicrobial Stewardship
October 11th 2024Use this handout to explain the basics of why infection prevention and control and antimicrobial stewardship are essential and how the 2 fields must have a unified approach to patient and staff safety