The hospital environment has been suggested as playing an important role in the transmission of hospital-associated (HA) pathogens. However, studies investigating the contamination of the hospital environment with methicillin-resistant Staphylococcus aureus (MRSA) or Clostridium difficile have generally focused on point prevalence studies of only a single pathogen. Research evaluating the roles of these two pathogens, concurrently, in the general hospital environment has not been conducted. The objectives of this study were to determine the prevalence and identify risk factors associated with MRSA and C. difficile contamination in the general environment of three community hospitals, prospectively.
Faires, et al. (2012) conducted sampling of environmental surfaces distributed over the medicine and surgical wards at each hospital once a week for four consecutive weeks. Sterile electrostatic cloths were used for environmental sampling and information regarding the surface sampled was recorded. For MRSA, air sampling was also conducted. Enrichment culture was performed and spa typing was performed for all MRSA isolates. For C. difficile, isolates were characterized by ribotyping and investigated for the presence of toxin genes by PCR. Using logistic regression, the following risk factors were examined for MRSA or C. difficile contamination: type of surface sampled, surface material, surface location, and the presence/absence of the other HA pathogen under investigation.
Â
Overall, 11.8 percent (n=612) and 2.4 percent (n=552) of surfaces were positive for MRSA and C. difficile, respectively. Based on molecular typing, five different MRSA strains and eight different C. difficile ribotypes, including ribotypes 027 (15.4 percent) and 078 (7.7 percent), were identified in the hospital environment. Results from the logistic regression model indicate that compared to computer keyboards, the following surfaces had increased odds of being contaminated with MRSA: chair backs, hand rails, isolation carts, and sofas.
Â
MRSA and C. difficile were identified from a variety of surfaces in the general hospital environment; the researchers conclude that several surfaces had an increased risk of being contaminated with MRSA but further studies regarding contact rates, type of surface material, and the populations using these surfaces are warranted. Their research is published in BMC Infectious Diseases.
Reference: Faires MC, Pearl DL, Ciccotelli WA, Straus K, Zinken G, Berke O, Reid-Smith RJ and Weese JS. A prospective study to examine the epidemiology of methicillin-resistant Staphylococcus aureus and Clostridium difficile contamination in the general environment of three community hospitals in southern Ontario, Canada. BMC Infectious Diseases 2012, 12:290 doi:10.1186/1471-2334-12-290
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Vet IP Roundtable 2: Infection Control and Biosecurity Challenges in Veterinary Care
March 31st 2025Veterinary IPs highlight critical gaps in cleaning protocols, training, and biosecurity, stressing the urgent need for standardized, animal-specific infection prevention practices across diverse care settings.
Invisible, Indispensable: The Vital Role of AHRQ in Infection Prevention
March 25th 2025With health care systems under strain and infection preventionists being laid off nationwide, a little-known federal agency stands as a last line of defense against preventable patient harm. Yet the Agency for Healthcare Research and Quality (AHRQ) is now facing devastating cuts—threatening decades of progress in patient safety.