Researchers have identified a new means to eradicate malaria infections by rapidly killing the bloodborne Plasmodium parasites that cause the disease.
Malaria causes up to 3 million deaths each year, predominantly afflicting vulnerable people such as children under five and pregnant women, in tropical regions of Africa, Asia and Latin America. Treatments are available for this disease, but the Plasmodium parasite is fast becoming resistant to the most common drugs, and health authorities say they desperately need new strategies to tackle the disease.
This new potential treatment uses molecules that interfere with an important stage of the parasite's growth cycle and harnesses this effect to kill them. The impact is so acute it kills 90 percent of the parasites in just three hours and all those tested in laboratory samples of infected human blood cells, within 12 hours.
The research was carried out by chemists at Imperial College London and biological scientists from the research institutions Institut Pasteur and CNRS in France. Their work is published in the journal Proceedings of the National Academy of Sciences (PNAS).
Lead researcher Dr. Matthew Fuchter, from Imperial College London, says, "Plasmodium falciparum causes 90 per cent of malaria deaths, and its ability to resist current therapies is spreading dramatically. While many new drugs are in development, a significant proportion are minor alterations, working in the same way as current ones and therefore may only be effective in the short term. We believe we may have identified the parasites 'Achilles' Heel', using a molecule that disrupts many vital processes for its survival and development."
The research has identified two chemical compounds that affect Plasmodium falciparum's ability to carry out transcription, the key process that translates genetic code into proteins. These compounds are able to kill the parasite during the long period of its complex life cycle while it inhabits the blood-stream. This is in contrast to the majority of antimalarial drugs, whose action is limited to shorter stages of Plasmodium's life cycle.
"One particularly exciting aspect of this discovery is this new molecule's ability to rapidly kill off all traces of the parasite, acting at least as fast as the best currently available antimalarial drug," says Fuchter.
Initial tests also showed the molecules were able to kill strains of Plasmodium that have developed a resistance to current treatments, although the scientists say more experiments are needed to confirm these results.
The scientists hope to refine these molecules, improving their effectiveness and proving this to be a viable strategy for treating malaria in humans. They hope it will lead to the development of an effective malaria cure within the next 10 years.
This research was supported by the New York Pasteur Foundation and the Bill and Melinda Gates Foundation and received funding from the European Research Council (ERC).
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Phage Therapy’s Future: Tackling Antimicrobial Resistance With Precision Viruses
April 24th 2025Bacteriophage therapy presents a promising alternative to antibiotics, especially as antimicrobial resistance continues to increase. Dr. Ran Nir-Paz discusses its potential, challenges, and future applications in this technology.