Bacteria can talk to each other via molecules that they themselves produce. The phenomenon is called quorum sensing, and is important when an infection propagates. Now, researchers at Linköping University in Sweden are showing how bacteria control processes in human cells the same way. The results are being published in PLOS Pathogens with Elena Vikström, researcher in medical microbiology, as the main author.
When the announcement goes out, more and more bacteria gather at the site of the attack a wound, for example. When there are enough of them, they start acting like multicellular organisms. They can form biofilms, dense structures with powers of resistance against both antibiotics and the bodys immune defence system. At the same time, they become more aggressive and increase their mobility. All these changes are triggered when the communication molecules short fatty acids with the designation AHL fasten to receptors inside the bacterial cells; as a consequence various genes are turned on and off.
AHL can wander freely through the cell membrane, not just in bacterial cells but also our own cells, which can be influenced to change their functions. In low concentrations white blood cells, for example, can be more flexible and effective, but in high concentrations the opposite occurs, which weakens our immune defences and opens the door for progressive infections and inflammations.
 The protein can both listen in on the bacterias communication and change the functions in its host cells, Vikström says.
Their laboratory studies were carried out on human epithelial cells from the intestines, which were mixed with AHL of the same type produced by Pseudomonas aeruginosa, a tough bacterium that causes illnesses in places like the lungs, intestines, and eyes. With the help of mass spectrometry, they have been able to see which proteins bind AHL.
We have proof that physical contact between bacteria and epithelial cells is not always required; the influence can happen at a distance, Vikström says.
The teams discovery can open the door to new strategies for treatment where antibiotics cannot help. One possibility is designing molecules that bind to the receptor and block the signal path for the bacteria something like putting a stick in a lock so the key wont go in. Its a strategy that could work with cystic fibrosis, for example, an illness where sticky mucus made of bacterial biofilm and large amounts of white blood cells is formed in the airways.
Reference: The Pseudomonas aeruginosa N-acylhomoserine lactone quorum sensing molecules target IQGAP1 and modulate epithelial cell migration by T Karlsson, M V Turkina, O Yakymenko, K-E Magnusson and E Vikström. PLOS Pathogens Vol 8 issue 10, October 2012.
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Phage Therapy’s Future: Tackling Antimicrobial Resistance With Precision Viruses
April 24th 2025Bacteriophage therapy presents a promising alternative to antibiotics, especially as antimicrobial resistance continues to increase. Dr. Ran Nir-Paz discusses its potential, challenges, and future applications in this technology.