Scientists used genetic sequencing to discover new evidence that the first vaccine shown to prevent HIV infection in people also affected the viruses in those who did become infected. Viruses with two genetic "footprints" were associated with greater vaccine efficacy. The results were published in the online edition of the journal Nature.
"This is the first time that we have seen pressure on the virus at the genetic level due to an effective HIV vaccine," says Morgane Rolland, PhD, a scientist at the U.S. Military HIV Research Program and lead author of the study. The analysis revealed evidence of a vaccine-induced immune response on two sites of Env-V2 region located on HIV's outer coat. For viruses carrying these two particular signatures, the vaccine efficacy increased to 80 percent.
"These findings reinforce both the RV144 result and the previous study showing that antibodies directed at the V1V2 region reduce the risk of infection. Taken together the work suggests that the Env-V2 region could be a critical target for future HIV vaccines," notes Col. Jerome Kim, senior author on the study.
"Genetic sequencing is an important and independent assessment of the immune responses induced by the vaccine," says Paul Edlefsen, PhD, a biostatistitian at the Statistical Center for HIV/AIDS Research and Prevention (SCHARP) who co-led the study. Researchers examined HIV genome sequences from 110 volunteers who participated in the Thai HIV vaccine trial, RV144, and who subsequently became infected with HIV. Results indicate that the HIV viruses infecting trial participants were different in persons who received vaccine compared to those who received placebo.
Researchers focused their analysis on the V2 portion of the HIV virus after a study published earlier in 2012 found that antibodies specific to the V1V2 region of the HIV genome correlated with lower risk of infection. This new genetic sequencing study showed that the viruses that broke through or escaped from these immune responses have genetic differences in the same V2 region, indicating that the vaccine exerted pressure in this region.
HIV viruses that escape from antibodies and manage to infect a person have genetic footprints, or mutations, that can prevent them from being recognized by the immune system. These changes can be seen in the genetic sequence of the virus. The research team sequenced more than a thousand full-length viruses to look very carefully at which changes corresponded to "escape" mutations.
"This study underscores the realistic optimism you see in the HIV vaccine research field today. We are making substantive progress in understanding what it will take to develop a more effective HIV vaccine which will ultimately help us end this pandemic." says Col. Nelson Michael, director of MHRP.
The study team included researchers with the U.S. Army's Military HIV Research Program (MHRP) at the Walter Reed Army Institute of Research, The Statistical Center for HIV/AIDS Research and Prevention (SCHARP) at the Fred Hutchinson Cancer Research Center and the University of Washington. The project was supported by the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health, and a cooperative agreement between the Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., and the U.S. Department of Defense (DoD).
Â
Reference:Â S. Rerks-Ngarm et al., Vaccination with ALVAC and AIDSVAX to Prevent HIV-1 Infection in Thailand. NEJM DOI: 10.1056/NEJMoa0908492 (2009).
Source: US Army Medical Research Institute of Infectious Diseases
From the Derby to the Decontam Room: Leadership Lessons for Sterile Processing
April 27th 2025Elizabeth (Betty) Casey, MSN, RN, CNOR, CRCST, CHL, is the SVP of Operations and Chief Nursing Officer at Surgical Solutions in Overland, Kansas. This SPD leader reframes preparation, unpredictability, and teamwork by comparing surgical services to the Kentucky Derby to reenergize sterile processing professionals and inspire systemic change.
Show, Tell, Teach: Elevating EVS Training Through Cognitive Science and Performance Coaching
April 25th 2025Training EVS workers for hygiene excellence demands more than manuals—it requires active engagement, motor skills coaching, and teach-back techniques to reduce HAIs and improve patient outcomes.
The Rise of Disposable Products in Health Care Cleaning and Linens
April 25th 2025Health care-associated infections are driving a shift toward disposable microfiber cloths, mop pads, and curtains—offering infection prevention, regulatory compliance, and operational efficiency in one-time-use solutions.
Phage Therapy’s Future: Tackling Antimicrobial Resistance With Precision Viruses
April 24th 2025Bacteriophage therapy presents a promising alternative to antibiotics, especially as antimicrobial resistance continues to increase. Dr. Ran Nir-Paz discusses its potential, challenges, and future applications in this technology.